Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 375-384, 2021.
Article in Chinese | WPRIM | ID: wpr-950227

ABSTRACT

Pyropia yezoensis (P. yezoensis) is a popular species of red algae that are commercially cultivated and consumed in East Asia, China, Japan, and Korea. The high protein content of P. yezoensis provides a source of multiple bioactive peptides exhibiting antioxidant, anti-inflammatory, antihypertensive, anticancer, tissue healing, immunomodulatory, and anticoagulant properties. Furthermore, many other biologically active substances in P. yezoensis, including carbohydrates, lipids, dietary fibers, and polyphenols, have shown potential health benefits and are important in both the food and agriculture industries. This review provides a detailed summary of researches over the last decade on the biological and medicinal properties of bioactive peptides. The information was extracted from various electronic resources, including Google Scholar, PubMed, MEDLINE, and Google Patents.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 375-384, 2021.
Article in Chinese | WPRIM | ID: wpr-942791

ABSTRACT

Pyropia yezoensis (P. yezoensis) is a popular species of red algae that are commercially cultivated and consumed in East Asia, China, Japan, and Korea. The high protein content of P. yezoensis provides a source of multiple bioactive peptides exhibiting antioxidant, anti-inflammatory, antihypertensive, anticancer, tissue healing, immunomodulatory, and anticoagulant properties. Furthermore, many other biologically active substances in P. yezoensis, including carbohydrates, lipids, dietary fibers, and polyphenols, have shown potential health benefits and are important in both the food and agriculture industries. This review provides a detailed summary of researches over the last decade on the biological and medicinal properties of bioactive peptides. The information was extracted from various electronic resources, including Google Scholar, PubMed, MEDLINE, and Google Patents.

3.
J Biosci ; 2015 Mar; 40 (1): 53-59
Article in English | IMSEAR | ID: sea-162017

ABSTRACT

The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF-α and NF-kB, as well as proteolytic enzymes, such as μ- calpain and m-calpain. The pre-treatment of Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of μ-calpain and m-calpain were significantly (p<0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely μ-calpain and m-calpain. Furthermore, the mRNA expression of TNF-α and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 μg/mL)/ Polyphenon 60 (50 μg/mL) significantly (p<0.05) down-regulated it when compared to the untreated control group. Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, μ-calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of μ-calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.

SELECTION OF CITATIONS
SEARCH DETAIL